A Methodology to Characterize the Influence of Pre-Straining on the Paint Bake Sensitivity of 3G-AHSS

Rhys Northcote

University of Waterloo

GREAT DESIGNS IN

Project Team

University of Waterloo

Rhys Northcote (MASc Candidate) Avalon Berry (Undergraduate Research Assistant) Advaith Narayanan (PhD Candidate) Cameron Tolton (Research Associate) Cliff Butcher (Associate Professor)

Auto/Steel Partnership: Steel Testing and Harmonization Team

Jonathan Smith (Project Manager)

Eric McCarty (Senior Project Manager)

Technical Leads

Dr. Haea Lee, Posco

- Introduction: Bake Hardening Index, Motivation, and ASTM A653
- Developed KS-1B Methodology
- Paint Bake Cycle, Test Matrix, and Materials
- Effect of Pre-Strain on the Bake Hardening Index using the KS-1B Methodology
- Comparison between KS-1B and ASTM A653
- Effect of Paint Bake Cycle on Sheared Edge Stretchability

Bake Hardening

Sheet metal components making up the vehicle BIW are subjected a baking cycle to cure applied paint coats

- The baking cycle is often referred to as paint baking
- Paint baking can increase yield strength due to static strain ageing known as bake hardening
- The level of bake hardening can be quantified by the Bake Hardening Index (BHI),

BHI = (Post-Bake Yield Stress) - (Pre-Bake Flow Stress)

Motivation

- Bake hardenable steels typically exhibit BHI between 30-70 MPa depending on the bake cycle and pre-strain¹
- The BHI of 3G-AHSS has potential to be even more sensitive to pre-strain as the microstructure evolves throughout plastic straining with retained austenite transforming to martensite

Jain, V., Misal, S., Paliwal, L., and Sathaye, A., "Effect of Pre-Strain and Baking Temperature on Bake-Hardening Behaviour of BH220 Steel," SAE Technical Paper 2023- 01-0078 (2023). https://doi.org/10.4271/2023-01-0078.
J. Sulik, J. Geeraerts, "2019 Chevrolet Silverado Structure Review", Presented at 2019 Great Designs in Steel, Sponsored by American Iron and Steel Institute

ASTM A653 Methodology

 The ASTM A653 standard is specified for 2% pre-strain however, forming strains typically exceed 2% requiring higher pre-strains to be tested

Application of ASTM A653 to 3G-AHSS

- For certain 3G-AHSS grades with pre-strains exceeding 2%, ASTM A653 is unable to determine the BHI
- Non-uniform pre-strain assumed to promote premature strain localization during retesting of baked coupons

Example: 1180GEN3 8% pre-strain

Baked Retest – Corresponding Stress Response

Developed KS-1B Methodology

- Developed by A/SP to promote characterization of BHI of 3G-AHSS for pre-strains greater than 2%
- Extraction of ASTM E8 coupon from pre-strained KS-1B sample provides a more uniform pre-strain field

Pre-Strain Levels

- KS-1B methodology applied to determine the effect of pre-strain on the BHI of considered GEN3 steels
- ASTM A653 methodology used to validate and contrast against KS-1B results for 2 and 8% pre-strain only

Pre-Strain	0%	2%	5%	8%	10%
KS-1B	X	\checkmark	\checkmark	\checkmark	\checkmark
ASTM A653	\checkmark	\checkmark	X	\checkmark	X

Materials

GDIS

Three commercial GEN3 Advanced High Strength Steels (AHSS) provided by the Auto/Steel Partnership considered

- 980GEN3: Lot #230 1.4 mm, Lot #243 1.6 mm
- 1180GEN3: Lot #242 1.2 mm

Material	980GEN3 Lot 230	1180GEN3 Lot 242	980GEN3 Lot 243
Yield Strength (MPa)	763 ± 6	1002 ± 24	644 ± 10
UTS (MPa)	1074 ± 4	1199 ± 2	985 ± 1
Uniform Elongation (%)	15.8 ± 0.4	10.7 ± 0.5	22.0 ± 0.6
True Strain at UE (%)	14.7 ± 0.3	10.2 ± 0.4	19.9 ± 0.5
Total Elongation (%)	22.2 ± 1.1	14.7 ± 0.6	27.6 ± 0.6

Simulated Paint Bake Cycle

- Furnace temperature and time required for samples to reach 170 ± 2°C calibrated with thermocouples
- Total furnace time of 35 min. \rightarrow 15 min. for samples to reach 170°C followed by 20 min. of paint bake

KS-1B Results: 980GEN3 Steels (Lot #230 & #243) GDIS

- The 980GEN3 steels exhibit significant bake hardening with the post-bake yield stress increasing with pre-strain
- Yield point elongation present in all bake hardened tests except for baking with no pre-strain for Lot 230

KS-1B Results: 1180GEN3 (Lot #242)

- The 1180GEN3 also shows significant sensitivity to the paint bake cycle and magnitude of pre-strain
- Strain localization occurs for 10% pre-strain as the uniform elongation of the base material is ~10%

Summary of KS-1B Results

- The BHI of all three steels is significantly sensitive to the magnitude of applied pre-strain
- For the 980GEN3 steels, the BHI increase by 75 and 43 MPa (230, 243) from 2% to 10% pre-strain
- For the 1180GEN3 steel, the BHI increases from 2-5% pre-strain but drops for 8 and 10% due to a decreased hardening rate for strains exceeding 5%

KS-1B & ASTM A653: 980GEN3 Steels (Lot #230 & 243) GDIS

• The bake hardening response and index (BHI) were consistent between methods for both 2 & 8% pre-strains

KS-1B & ASTM A653 : 1180GEN3 (Lot #242)

• For 2% pre-strain, the engineering stress response and corresponding BHI closely align for the 1180GEN3 steel

KS-1B & ASTM A653 : 1180GEN3 (Lot #242)

 For 8% pre-strain, ASTM A653 was unable to characterize the BHI as the bake hardened coupons fractured prematurely in transition radius

Bake Hardened Retests

ASTM A653: 1180GEN3, 8% Pre-Strain

• Significant strain gradients at the transition radius of the pre-strained ASTM E8 coupons resulted in strain localizing in the soft transition radius during retesting of the bake hardened coupon

KS-1B: 1180GEN3, 8% Pre-Strain

• KS-1B resulted in a uniform pre-strain field and avoided strain localization outside of the gauge during retesting

KS-1B & ASTM A653 : BHI Comparison

- The ASTM A653 and KS-1B BHI are in agreement for 2% pre-strain for all considered steels
- For 8% pre-strain, the BHI determined from both methods align for the 980GEN3 steels
- For the 1180GEN3, only the KS-1B methodology is able to successfully characterize the BHI at 8% pre-strain

Influence of Significant Pre-Strain: Hole Punching GDIS

- Punching can induce significant local strain (up to 200%¹) in the shear affected zone (SAZ)
- Effect of paint bake for extreme pre-strain evaluated with sheared edge conical hole expansion (HX)
- Machined edges considered to have negligible residual strain tested to provide a baseline

Test Parameters

- Hole diameter: 10 mm
- Punch Angle: 60° (conical)
- Punch Speed: 0.25 mm/s
- Binder Force: 640 kN

Punch Parameters

- Cutting clearance: 12%
- Cutting speed: 50 mm/s

Punching Tool

Fracture Image (Lot #243, Machined)

[1] Pathak, N., Butcher, C., and Worswick, M., "Experimental Techniques for Finite Shear Strain Measurement within Two Advanced High Strength Steels," Experimental Mechanics 59, no. 2 (2018): 125-148. https://doi.org/10.1007/s11340-018-00448-1.

Conical HX Process Routes

• Three process routes were considered, baseline tests also conducted on the materials without heat treatment for both machined and sheared edges

Sheared Edge Profiles

- Punched holes were sectioned to characterize the four sheared edge zones; rollover, burnish, fracture, and burr
- A negligible burr was observed on all samples attributed to the use of new/sharp punching tools

Shear Affected Zone Hardness Maps

• Vickers microhardness maps were created behind the sheared edge to quantify the SAZ depth and severity

Test Parameters

Indenter Load: 500 gf; Dwell Time: 10 s; Indent Pitch: 3x indent width

Conical HX: 980GEN3 (Lot #230)

- The paint bake had minimal effect on the SAZ and base material hardness regardless of punch/bake sequence
- Paint bake cycle had a minimal effect on the HER consistent with the hardness trends

Conical HX: 980GEN3 (Lot #243)

- Minor differences in the SAZ hardness profiles were observed for the different baking sequences
- Paint baking resulted in a minor decrease in the HER for both the sheared and machined edge

Conical HX: 1180GEN3 (Lot #242)

- **GDIS**
- The hardness profile behind the sheared edge was statistically similar regardless of paint bake cycle
- The sheared edge HER did not differ significantly for either baking sequence while the machined edge HER decreased significantly after bake hardening

- The bake hardening indices of the considered GEN3 AHSS grades changed significantly with the magnitude of applied tensile pre-strain
- The BHI determined with the KS-1B method for 2 & 8% pre-strain closely matched the ASTM A653 results for the considered 980GEN3 steels
- For 8% pre-strain, the ASTM A653 method was unable to characterize the BHI of the 1180GEN3 steel due to premature fracture while the KS-1B was successful in determining the BHI
- The sheared edge formability of the considered 3G steels did not appear to be affected by the paint bake cycle regardless of process sequence

For More Information

Name: Rhys Northcote

Company: University of Waterloo

Email: rnorthcote@uwaterloo.ca

Name: Cliff Butcher

Company: University of Waterloo

Email: cbutcher@uwaterloo.ca

Name: Jonathan Smith

Company: Auto/Steel Partnership

Email: jsmith@a-sp.org

Name: Eric McCarty

Company: Auto/Steel Partnership

Email: emccarty@a-sp.org

