Toward New Automotive Steel Developments Driven by Big DATA & A. I.

Supporting Faster & Smarter CAE of Automotive Body Structures

FADI Abu-Farha, PhD

fadi@mat-insights.com

GREAT DESIGNS IN

١Þ

Who We Are ... Our Involvement in Big Data & A.I.

We are a "Data-Centered Company" that offers several products all cohesively integrated to provide access to high quality "material data" for research & development purposes (focus on CAE).

Database

First Comes Data ...

GDIS

Hardening

Anicotropy

- > Generated the largest & most comprehensive R&D-level database for automotive steel grades ...
- Covered all possible testtypes & loading conditions ...
- > Maximum outputs per test!
- ➢ FEA Outputs (for direct feed into CAE tools)...

																Anisotropy	
		Fn			Hill 48-3R Model Parameters							•					
	DUMNS 🗄 E	xport			III COLUMNS 🗄 Export												
[2mm]			[1mm]			[0.5mm]			F		G		н	[™] Rate Sensitivit [•]			
Maj.	٤ Min.	ε Eff.	ε Μαj.	ε Min.	ε Eff.	ε Μαj.	ε Min.	ε Eff.	0.481	(.563).437		1.420		
540	-0.219	0.543	0.597	-0.218	0.605	0.594	-0.207	0.603									
512	-0.199	0.516	0.571	-0.206	0.579	0.574	-0.194	0.583									
550	-0.209	0.555	0.609	-0.214	0.618	0.607	-0.219	0.615	Barlat YLD89 Model Parameters							Forming	
534	-0.209	0.538	0.593	-0.213	0.601	0.591	-0.207	0.600								ronnig	
020	0.010	0.020	0.019	0.006	0.020	0.017	0.012	0.016	Export								
									α		c		h		Р		
533	-0.222	0.536	0.578	-0.213	0.585	0.577	-0.206	0.584									
495	-0.235	0.496	0.551	-0.242	0.553	0.568	-0.244	0.569	1.089		0.911		1.958		0.945		
599	-0.258	0.601	0.650	-0.250	0.656	0.642	-0.235	0.649								Fractura	
543	-0.238	0.544	0.593	-0.235	0.598	0.595	-0.228	0.601								Flaciule	
052	0.018	0.053	0.051	0.019	0.053	0.040	0.020	0.042									
515	-0.237	0.515	0.560	-0.256	0.561	0.552	-0.248	0.553	Barlat YLD2000 Model Parameters								
491	-0.223	0.491	0.523	-0.234	0.524	0.533	-0.238	0.534									
497	-0.226	0.497	0.536	-0.229	0.538	0.530	-0.227	0.532	Export								
501	-0.229	0.501	0.540	-0.239	0.541	0.538	-0.238	0.540	αl α2	α3	α4	α5	α6	α7	α8	Springback	
012	0.007	0.012	0.019	0.014	0.018	0.012	0.011	0.011								opinigbuok	
									0.898 1.004	0.869	0.965	0.977	0.758	0.952	1112		
									0.000	0.000	0.000	0.077	0.700	0.002			

Database

Then Big Data ...

GDIS

- From a simple "Banana Chart" to complex "Data Maps" ...
- ➢ From complex "Data Maps" to detailed "Datasets" ...
- From detailed "Dataset" to comprehensive, consistent R&D-worthy Database …

Big Data Facilitates Next Generation CAE Work ...

A. I. Further Facilitates Next Generation CAE Work ...

- Simple inputs can yield complex data & FEA parameters to boost efficient CAE!
- Input data for a large # of steel grades
- Consider as many grade variations as possible
- Link tests types, loading cases & relevant metadata
- Goal: a tool where simple input of tensile properties* can yield complex material data ... & all FEA parameters to run Forming Simulations (plasticity, anisotropy, forming & springback)

GDIS

A. I. Further Facilitates Next Generation CAE Work ...

Simple inputs can yield complex data & Material Analysis & Fitting & FEA Prep+ CAE Work FEA parameters to boost efficient CAE! Sourcina Material Data Model Material Calibration +Shipping Testing Outputs Cards Example: predicting FLCs based on simple tensile mechanical properties or even tensile flow curves! Model can provide all FEA material card parameters for running forming simulations (without springback) A.I. ... Faster & Smarter & Adaptive CAE of Automotive Structures We are expanding it to account for springback! (Hardening Why adaptive? Not bound by what exists today! Grade: DP1470 Anisotropy 0.30 Predicted (3 pts) Actual (3 pts) 0.25 III Testing Rate Sensitivity III Senso In Tracke **Major Strain** 0.20 Pasouro III Databas In Lab 0.15 Forming material insights 0.10 Fracture 0.05 ALL REESE 0.00 Springback -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 **Minor Strain**

GDIS

Thank You!

FADI Abu-Farha, PhD

fadi@mat-insights.com

GREAT DESIGNS IN

٩I