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The Application of Artificial Intelligence and Machine 
Learning for Steel Characterization and Modeling

A/SP research is precompetitive, as such the lower and 
upper bounds of the vehicle length scale are excluded

• Lower bound: Steel chemistry, steel processing, etc.

• Upper bound: Discrete component/assembly design or 
manufacturing processes

A/SP’s application of ML/AI is focused on systemic issues 
that inhibit the selection and implementation of steel in 
automotive components and assemblies

• Material testing and characterization

• Steel formability and fracture

• Process and performance modeling
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DIC Procedures and Standardization for the Constitutive and 
Fracture Characterization of AHSS Sheet for CAE Application

Team: A/SP Constitutive and Fracture Modeling Team

Problem Statement

• Application of DIC is undisciplined and results are sensitive to lab 
expertise and equipment

• A/SP generates vast amounts of DIC data across its projects 
with multiple vendors
• Digital Image Correlation Material characterization data sets can be 

large (>1TB)

• DIC testing, analysis and reporting need standardization to 
support ML/AI initiatives

Goal: Standardize material characterization using DIC with 
emphasis upon supporting CAE simulation and correlation

Primary Deliverable: Industry Consensus Material Cards.

Applications:
Edge Cracking Prediction

Laser Welded Blank Formability

Nonlinear Strain Path - Crash Prediction

Garbage in – Garbage Out

Computer models are only as good 

as the data that feeds them

Image courtesy of the University of Waterloo



Laser Welded Blank Formability

Teams: A/SP Joining and Stamping Teams

Goals: 
• Develop laser welding process models for optimizing laser weld 

performance
• Develop laser welded blank formability models for weld placement 

and performance optimization

Objectives:
• Develop a ML approach to predicting LWB performance from 

limited but expandable datasets
• Base material cards
• HAZ material cards
• Load paths (Coupon performance data (tensile, bending, biaxial, plane 

strain, etc.)

• Reduce the amount of constitutive and coupon testing
• Infinite number of variables
• Material grade, orientation and thickness
• Laser weld process parameters
• Laser weld properties (base material, fusion zone, heat affected zone)
• Weld topography (same thickness, different thickness, wire assisted, etc.)
• Joint alignment
• Load paths

Use of ML/AI is constrained by 

length-scale application and 

size of the datasets.



Fatigue Life Prediction of Gas Metal Arc Welded 
Assemblies

• Team: Gas Metal Arc Welding – Fatigue Characterization and Modeling

• Problem Statement:

Structural Stress is the only factor for the fatigue life prediction and do not include 
the influence of welding conditions, material composition, and other parameters that 
can affect weld fatigue life.  Therefore, prediction results may have more variability.

• Goal: 

To develop a Machine Learning (ML) model for fatigue life prediction of GMAW joints 
using machine learning platforms such as Tensorflow and Pytorch.

• Objectives:

• Overcome the shortcoming of stress-based fatigue life prediction methods by 
including industrial factors that affect fatigue life of welds.

• Improve the accuracy of fatigue life prediction of GMAW joints

• Approach:

• Record fatigue test results of welded joints including test, weld, and material 
information

• Develop a ML Model

• Train and validate ML Model with the collected data

• Validate the ML Model with structural component test results. 

 

 

Fig. 9. Fatigue load range vs. cycles to failure for different specimen types and thicknesses. 

Load range vs. Fatigue life

 

 

Fig. 11. Structural stress range vs. cycles to failure for different specimen types and thicknesses. 

 

Structural stress method



Industrial Fracture Consortium (ETH/MIT)

A/SP is a member of the IFC

Examples of important developments in the application 
of ML/AI in constitutive, forming and fracture modeling: 

• Crystal Plasticity Constitutive Model

• Crystal plasticity can be used to generate a high-fidelity 
database of material response. This database is used to 
train a Minimal State Cell model

• Replacing FE analysis through ML predictions

• Convolutional Neural Networks (CNNs) can accurately 
predict the thickness distribution of an elastoplastic metal 
sheet during forming

• Training Neural Network-based constitutive models 
from biaxial random walk experiments

• Train a MSC model based on 𝝈, 𝜺 –sequences on a 
single element (reduced required data and simulation 
time)

• Uses random walk method – can enable simulating work 
history (nonlinear strain paths)



Summary

Successful application of ML/AI solutions is highly dependent upon the amount and 
quality of data used to train the models

AI/ML has been successfully applied in the development of steel constitutive, forming 
and fracture models. 

A/SP’s goals

• Standardized DIC material test procedures

• Development of DIC best practices for data recording and analysis

• Improved steel material cards and data sets for constitutive, forming and fracture 
modeling

• Development of comprehensive ML/AI computer models for modeling LWB 
formability

• Development of comprehensive ML/AI computer models for modeling RSW, LWB, 
and GMAW component performance. 



Questions

Q: How will AI/ML be integrated into materials and manufacturing?

A: There are obvious cost drivers to incentivize the application of AI/ML in manufacturing, such as developing steel alloy 
design, reducing scrap, reducing manufacturing defects, etc.  Applications in material science will likely focus on 
modeling material behavior, which will be highly dependent on available data to ensure the models are comprehensive.  
Unlike in manufacturing, where data is continuously generated, upstream applications of AI/ML in material science 
initiatives, will depend on the availability of existing data, where data quality is a concern, and the feasibility and cost of 
generating needed data.  These challenges increase the further up the length-scale you go.  However, as discussed 
earlier, the minimal state variable approach used by IFC may be able to significantly reduce the amount of constitutive 
data needed for ML/AI based material modeling. 

Q: What are the barriers inhibiting the application of AI/ML in steel research.

A: The availability of quality and comprehensive material data sets is the most significant impediment to applying AI/ML 
in the steel modeling.  For example, comprehensive material cards tend to be proprietary limiting availability, whereas the 
quality of generic material cards can be questioned.  Complicating things is the lack of consensus on the constitutive 
data needed for a comprehensive material card, let alone the test methodologies for collecting constitutive data.  
Unfortunately, the cost of generating data is prohibitive, especially when considering the impact of industrial factors. 
anisotropy, strain rate, etc.  Cooperative work within consortiums, like A/SP and the IFC, offer opportunities that balance 
the proprietary concerns of material producers with customer interests for effective modeling of material and joint 
behavior. 
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