GREAT DESIGNS IN

Die Wear Testing- Phase II, OEM Additional Materials

JP Singh

Tech Integration Engineer - Steel

General Motors Company

(Presenting for Auto/Steel Partnership)

Members

Gestamp 🖉

METALSA

osco

NUCOR

STELLMNTIS

ΤΟΥΟΤΑ

PROJECT TEAM MEMBERS

<u>JPC Project Mentor</u>: JP Singh, GM <u>Project Manager</u>: Michael White, A/SP

Project Team Members:

- Shawn Schaffert, General Motors
- Scott Holden, General Motors
- Patrick Ricchi, General Motors
- Jonathan Ellert, General Motors
- Ante Lausic, General Motors
- Jeffrey Powell, General Motors
- Ohyoung Choi, General Motors
- Paul Wolcott, General Motors

- Dean Kanelos, Nucor
- Arnie Newsome, Nucor
- Jiwoong Ha, Posco America
- Philippa Chiu, Stellantis
- Jose Luis Galaviz, Stellantis
- Nathan Blandford, Toyota

Project Details

Objective

Compare wear performance of select OEM die systems (die material, heat treatment and coating).

Problem Statement

- Established wear tests, such as pin-on-disk, assess accumulated wear over the same surface, which does not replicate tool wear in stamping operations where the surface changes with each die stroke.
- In the previous project phase, accelerated sliding wear test developed by A/SP and Univ of Windsor, assessed tool wear over a continuously renewed surface on uncoated high strength steel. The test's applicability to coated automotive sheet steels is not known.

Project Details

GDIS

Goal

To validate the Sliding Wear Test for coated advanced high strength steels.

Objectives

Test and compare the slide wear results for the following sheet steels:

- DP980 GI CR600Y980T-DP: Hot Dip Galvanize (60G60G) coated
- 3rd Gen 980 GI CR600Y980T-RA-SE: Hot Dip Galvanize (60G60G) coated
- 3rd Gen 980 GA CR600Y980T-RA-HE: Hot Dip Galvanneal (45G45G) coated
- 3rd Gen 1180 GA CR850Y1180T-RA: Hot Dip Galvanneal (45G45G) coated

Project Details

Participants

Betz Industries (In-Kind) Alro Steel (In-Kind) Diehl Steel (In-Kind) Voestalpine (In-Kind) IonBond (In-Kind) **Oerlikon Balzer (In-Kind)** University of Windsor **Microfixtures** Sun Steel Synergy Additive Manufacturing, LLC

Die Wear Pin- Material, Processing and Coating

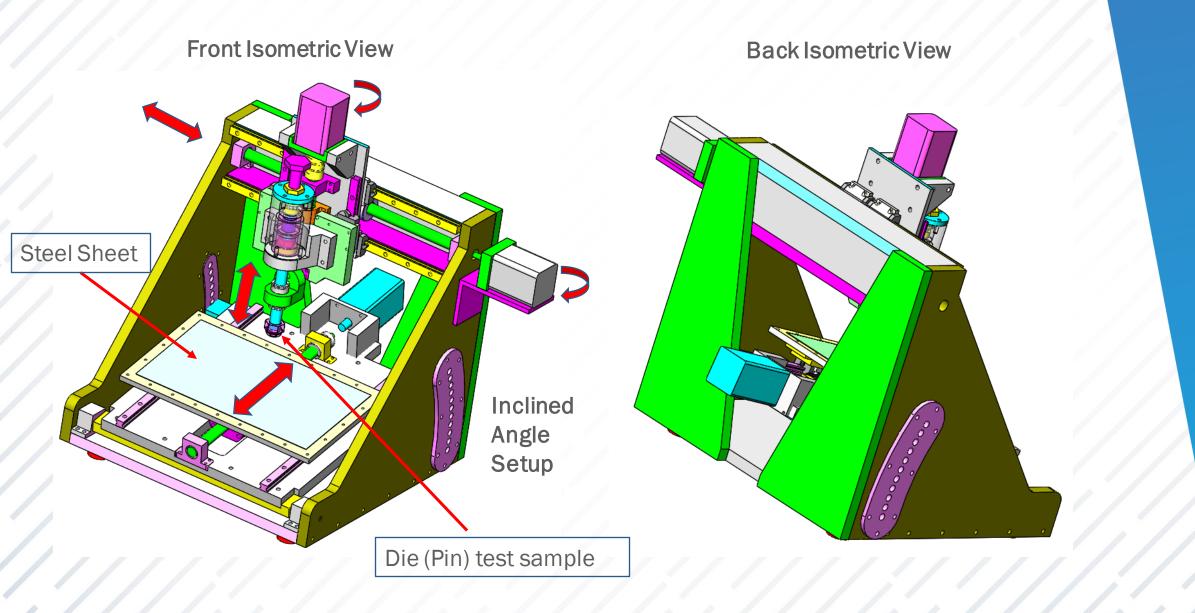
Project Approach - Testing Conditions

Die Pin Materials/Coatings & Sheet Materials/Coatings:

- 1. 4140-M2-DP980-GI
- 2. D6510-M2-DP980-GI
- 3. A2-IN+MLCBC-3G980-GI
- 4. PA-IN+MLCBC-3G980-GI
- 5. PB-MLCBC-3G980-GA
- 6. PC-MLCBC-3G1180-GA

Pin size: ~15mm in diameter (Pins: plasma nitride + coatings)

Sheet size: 300mm x 500mm


Test conditions:

Load: 600N (135 lbs) Sliding velocity: 0.1 m/s Distance per track: 0.1 m Mill Oil density: 1 g/m^2 Number of tracks per row: 88

Number of sheets per pin: 3 Number of rows per sheets: 4 (2 front and 2 back) Number of tracks per pin: $3 \times 4 \times 88 = 1056$ Total sliding distance per pin: 105.6 m

Tabletop Die Wear Tester

GDIS

9

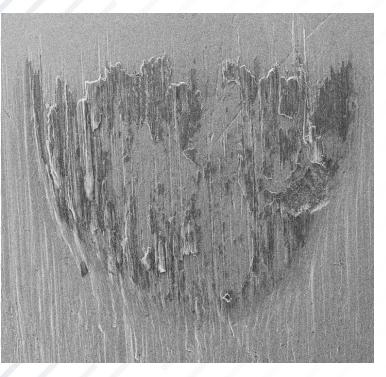
Project Results: Materials Tested

		CASE#1			CASE#2	CASE#3		
Test Material	Pin Material	4140	D6510	A2 Proprietary (A) Proprietary (B)		Proprietary (C)		
	Pin Coating	M2		Ion Nitride + Multi–Layer Cr Based Coating		Ion Nitride + Multi–Layer Cr Based Coating		
	Sheet Material & Coating	DP980-GI			3G980-GI	3G980-GA	3G1180-GA	
Sheet Samples			el 15 25 000- 70 70 70 70 70 70 70 70 70 70 70 70 70	GM 05 A2	10 30 30 41 41	2°	70 Mar. 10 Mar. 10 Mar. 10 Mar. 01	

Project Results: Materials Tested

R.31245 inch

Ra < 0.1 um


			CASE#1		E#2	CASE#3		
Test Material	Pin Material	4140 D6510		A2	Proprietary (A)	Proprietary (B) Proprietary (
	Pin Coating	M2			Multi-Layer d Coating	Ion Nitride + Multi-Layer Cr Based Coating		
	Sheet Material & Coating	DP980-GI		3G98	80-GI	3G980-GA	3G1180-GA	

Project Results: Sheet Wear and Die Pin Wear

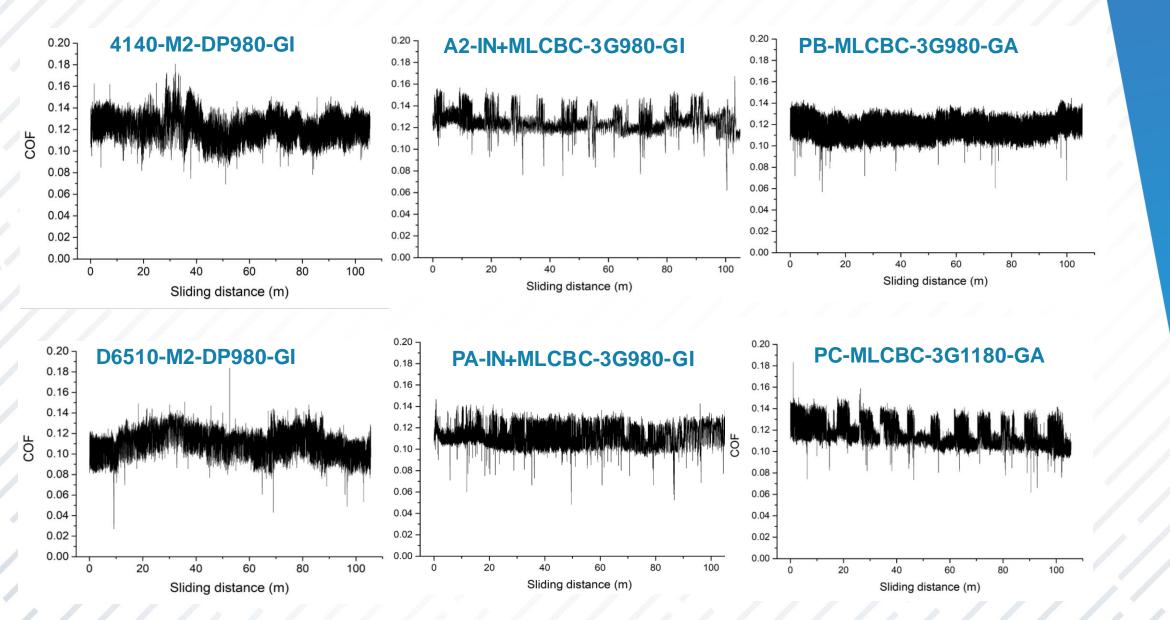
		CASE #1		CASE #2		CASE #3		1	
Test Material	Pin Material	4140	D6510	A2	Proprietary A	Proprietary B	Proprietary C	1	
	Pin Coating	M2		Ion Nitride + Multi-layer Cr based Coating		Multi-layer Cr based Coating			
	Sheet Material	DP980-GI		Gen3 980-GI		Gen3 980-GA Gen3 1180-GA			
	Row #1							KEY - TRA	CK WIDTH
	(1st sheet)							KLI-INA	
Sheet Wear Track Width	Row #6							0% TO 4.9%	5% TO 9.9%
(mm)	(2nd sheet)								
	Row #12							10% TO 14.9%	> 15%
	(3rd sheet)								
	Row #1							KEV - TRA	CK DEPTH
	(1st sheet)							NET- INA	JKDEFIN
Sheet Wear Track Depth	Row #6							07 TO 24 97	25% TO 49.9%
(μm)	(2nd sheet)							0/110 21.07	23/2 10 10.07
	Row #12							50% TO 74.9%	>75%
	(3rd sheet)								
	Formation	Minor Material Transfer + Scratches		Top Layer (solid lubricant) wear		Scratches + Minor Material Transfer	Scratches + Minor Material Transfer	KEY - PIN WEAR	
Pin Wear Scar	Affected Area (mm^2)							LEAST	
	Wear/Contact Area (mm^2)	Galling	Galling	Minor Wear	Minor Wear	Minimum Wear	Minimum Wear		MOST
					6				

Project Results: Die Pin Analysis

GDIS

(4140-M2-DP980-GI) Contact Width: ~0.92 mm

(P(A)-IN+MLCBC-3G980-GI) Contact Width: ~0.90 mm


(P(B)-MLCBC-3G980-GA) Contact Width: ~0.77 mm

1

Observations: 1- Zn-wear debris severely adhered on the M2 coating surface at the contacting and surrounding areas.

- 2- Some Zn-wear debris adhered on the multi-layer Cr based coating at the contacting and surrounding areas.
- 3- Minimum Zn-Fe wear debris (high hardness) attached on the multi-layer Cr based coating.

Project Results: Coefficient of Friction

Project Summary / Conclusion

- a. Overall:
 - The test method was able to show that wear and friction behavior were largely influenced by coating, substrate and sheet materials/coatings.
- b. M2 and MLCB Coatings
 - For the M2-coated pin case, the wear track width and depth on the steel sheet increased with the sliding distance (Case #1). The wear tracks on steel sheets didn't change much for cases of both MLCB-coated pins (Case #2 and Case #3).
 - M2 coating had a significant material transfer from the sheet metal and appeared to have many wear scratches. The top (solid lube) layer of MLCB coating was worn off around the contact areas, which may be related to a negative effect of the GI coating on the steel sheet.
- c. Sheet Steel coatings
 - The GA coating caused a less material transfer to the pin surface, likely due to its higher hardness of Zn-Fe alloyed surface. The zinc from the GI coated steel transferred and adhered to the pin surfaces (severe for M2 coated pins and less severe for the ionitrided+MLCBC case), which caused a much wider wear scar on both M2-coated and ionitrided+MLCB coated pins.
 - M2-coated pin against the GI steel could show a higher coefficient of friction (COF). However, COF value was influenced by many variables.

Value Proposition

 The Sliding Wear Test improves our understanding on the effect of sheet coating and tool materials and coatings to sheet-die friction, sliding energy, and wear pattern/mechanism, which can guide stamping process and die design for advanced and ultra high strength steels.

Pros and Cons

- Advantages
 - The Sliding Wear Test more closely represents the contact and sliding conditions in the stamping production.
 - The test is very effective in evaluating tool systems (base metal, heat treat, coating, surface finish, etc.) against sheet steel, coated or uncoated.
- Disadvantages
 - The test is time consuming and costly, but the results are valuable based on the advantages listed earlier.
 - For soft surface and low friction conditions, such as coated sheet steel, more test coupons are required, which increases testing time and cost.
 - The correlation with stamping operations and standardized wear tests is not yet known.

Next Steps

- The Stamping Tooling Optimization project team is performing a literature study to determine state of the art developments in die wear testing and technologies.
- Additional analysis of the tested pins will be performed.

For more information

JP Singh, Tech Integration Engineer-Steel General Motors Company jatinder.singh@gm.com

Michael White, Project Manager Auto/Steel Partnership mwhite@a-sp.org