

Delayed Cracking of Advanced High Strength Steel Solutions

A/SP Steel Testing Harmonization Task Force

Curt D. Horvath - General Motors Company

Eric S. Batt - Arcelor Mittal USA

Team Members

Mentor: Dean Kanelos - Nucor Steel

Co-Principal Investigator: Eric Batt - ArcelorMittal

Co-Principal Investigator: Curt Horvath - General Motors Company

Project Manager: Jonathan Smith, Auto/Steel Partnership

A/SP Team Members:

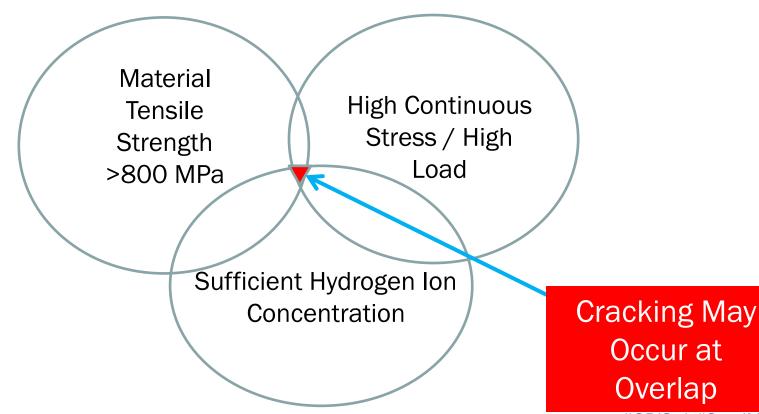
- J. Bickham ArcelorMittal
- J. Cole Ford Motor Company
- R. J. Comstock AK Steel
- J. J. Coryell General Motors Company
- C. Matthew Enloe General Motors Company
- J. J. Fitzpatrick ArcleorMittal
- M. P. Hammerl AK Steel
- M. M. Huang ArcelorMittal
- P. Makrygiannis AK Steel

- A. D. Pearson General Motors
- R. Radzilowski AK Steel
- N. Ramisetti ArcelorMittal
- D. S. Ruhno Ford Motor Company
- J. Singh FCA Group
- P. Som -ArcleorMittal
- J. Stachowski Nucor
- A. Thompson Nucor
- Y. Wang AK Steel
- S. Wolf ArcelorMittal
- W. Wu AK Steel

Project Goals

- To develop a test method for ranking the relative susceptibility of zinc coated advanced high strength steels (AHSS) and ultra-high strength steels (UHSS) to hydrogen assisted cracking.
- To avoid the most common concerns with existing tests:
 - Artificial "charging" with hydrogen concentrations far above what would be expected in automotive environment
 - Development of a test that is not relevant to thin sheet steels
 - Development of a test that is complicated and/or requires R&D type of equipment

Project Goals


- To expand on the previous work done by the A/SP STHT which resulted in a draft procedure for determining the relative susceptibility of bare AHSS/UHSS
- To develop a representative test for zinc coated steels

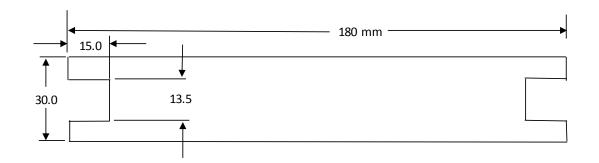
Project Deliverables

- A test that is relatively easy to run and adapted for new grade validation
- A test that can be modified for specific OEM pass/fail criteria.
- A test that is applicable to sheet steel with or without additional manufacturing (coating, welding, etc.) or in-service corrosion inputs

Note: It is commonly thought that the risk for hydrogen assisted cracking cannot be completely eliminated (in all potential processes/environments) unless tensile strengths are restricted below 800 MPa

Hydrogen Assisted Cracking – Venn Diagram

Previous Work Observations/Conclusions

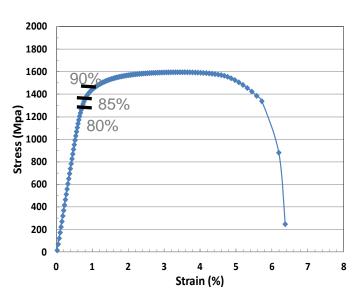

- A bend test consisting of samples pre-strained to >/=70% of their yield strength shows promise for evaluating hydrogen susceptibility
- Some materials/microstructure combinations with high tensile strengths have been shown as susceptible to hydrogen assisted cracking when exposed to test conditions
- Hydrogen related cracks occur very early in the test.

Previous Work Observations/Conclusions

- Multiple test labs have seen similar results when susceptible materials are evaluated to the new test method.
- The A/SP Sheet Steel Harmonization Task Force has developed a draft test method for testing uncoated steels.
- When testing zinc coated steels with 0.1N HCl, the generation of hydrogen during dissolution can lead to premature fracture.

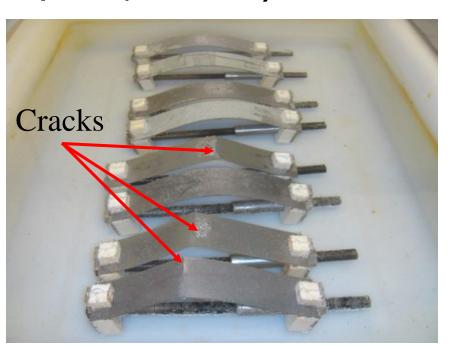
Test Method

Test Sample Geometry



Test Method

Test Sample Geometry



- Samples are strain-gauged and bent to the desired stress levels
- Fixtured samples are immersed in 0.1 N hydrochloric acid

Test Method

pH ~1 (After 5 hrs)

Observation:

Susceptible materials at high strains, immersed in 0.1N HCl, exhibit large cracks after relatively short exposures to the acid solution

Current Investigations

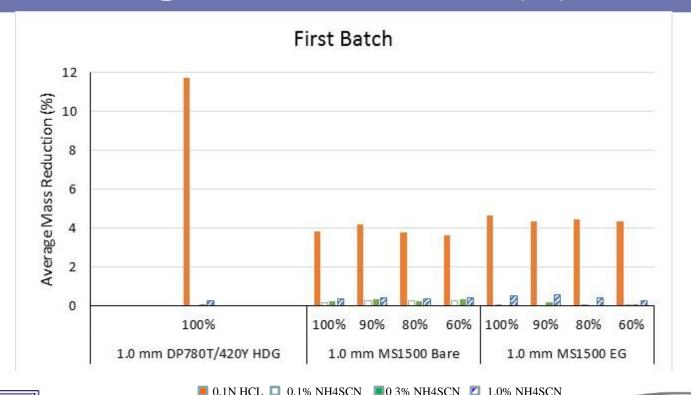
- Goal: Work with AET Integration, Inc. to determine adaptations needed to current draft procedure to allow testing of grades with zinc coatings
- Comparison of different concentrations of hydrogen source (NH₄SCN) to previously studied HCI.
- Testing of dual phase, fully martensitic and press hardened grades

Test Matrix

Material					Solution Concentration		Specimens			
Material Grade	Thickness	Coating	Strain Level of Test (% of Yield Stress)			0.1N HCl	NH ₄ SCN	# of Runs	Specimens (3 Replicates)	
DP780T/420Y	1.0	HDGI	100%				1	3/5	6	18
DP980/550Y	1.2	Bare	100%				1	3/3	4	12
	1.2	EG	100%				1	3/3	4	12
MP980T/700Y LCE	1.4	Bare	100%	TBD	TBD		1	3	12	36
MP980T/700Y LCE	1.4	EG	100%				1	3/3	4	12
MS1500T/1200Y	1.4	EG	100%	TBD	TBD		1	3	12	36
	1.0	Bare	100%	90%	80%	60%	1	3/5	24	72
	1.0	EG	100%	90%	80%	60%	1	3/5	24	90
MS1700T/1350Y	1.0	Bare	100%	TBD	TBD	TBD	1	5	30	90
HS1300T/950Y PHS	1.0	Bare	100%	TBD	TBD	TBD	1	5	20	90
	1.0	AlSi	100%	TBD	TBD	TBD	1	5	30	90
	2.0	AlSi	100%	TBD	TBD	TBD	1	5	30	90

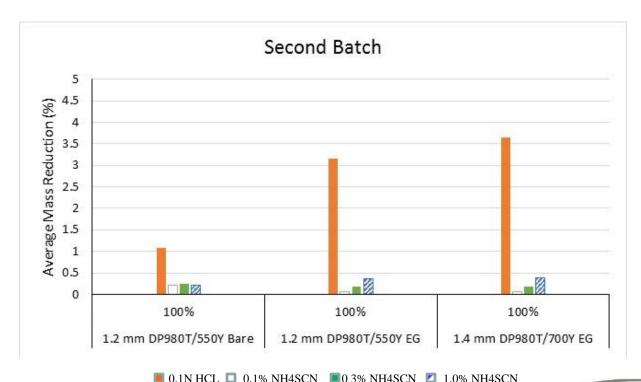
^{*} All samples ran with bend parallel to rolling direction

^{**} All samples ran with shear edge on top of bend specimens (in tension)


Test Results – First Batch

			% of Yield Strength	Total	Number of Specimens
Material	Solution	Initial pH	Tested	Specimens	Cracked
	0.1N HCL	1.04	100%	3	0
4.0 007007/420//100/	0.1% NH₄SCN	5.60	100%	3	0
1.0mm DP780T/420Y HDGI	0.3% NH ₄ SCN	5.50	100%	3	0
	1.0% NH ₄ SCN	6.06	100%	3	0
	0.1N HCL	1.00	100%, 90%, 80%, 60%	12	0
	0.1% NH₄SCN	6.73	100%, 90%, 80%, 60%	12	0
1.0mm MS1500 Bare	0.3% NH ₄ SCN	5.40	100%, 90%, 80%, 60%	12	12
	1.0% NH ₄ SCN	5.57	100%, 90%, 80%, 60%	12	11
	0.1N HCL	1.08	100%, 90%, 80%, 60%	12	11
4.0 MG 4500 50	0.1% NH₄SCN	5.73	100%, 90%, 80%, 60%	12	10
1.0 mm MS 1500 EG	0.3% NH₄SCN	5.38	100%, 90%, 80%, 60%	12	12
	1.0% NH ₄ SCN	5.86	100%, 90%, 80%, 60%	12	12

Average Mass Reduction (%) – First Batch


Test Results - Second Batch

Material	Solution	Initial pH	% of Yield Strength Tested	Total Specimens	Number of Specimens Cracked
1.2mm DP980T/550Y Bare	0.1N HCL	1.05	100%	3	0
	0.1% NH ₄ SCN	5.52	100%	3	0
	0.3% NH ₄ SCN	5.42	100%	3	0
	1.0% NH ₄ SCN	5.09	100%	3	0
	0.1N HCL	1.05	100%	3	0
	0.1% NH ₄ SCN	5.48	100%	3	0
1.2mm DP980T/550Y EG	0.3% NH ₄ SCN	5.36	100%	3	0
	1.0% NH ₄ SCN	5.04	100%	3	1
	0.1N HCL	1.04	100%	3	0
	0.1% NH ₄ SCN	5.48	100%	3	0
1.2mm DP980T/700Y EG	0.3% NH ₄ SCN	5.37	100%	3	0
	1.0% NH ₄ SCN	5.04	100%	3	0

Average Mass Reduction (%) – Second Batch

Current Observations

- Use of NH₄SCN resulted in a significantly lower attack on the coatings than the previously used HCI
- The lower rate of attack on the zinc coatings in the NH₄SCN solutions (ie low mass loss), likely resulted in low/little hydrogen evolution and lower amounts of hydrogen absorption

Conclusions

- The use of a NH₄SCN solution appeared to greatly reduce or eliminate hydrogen evolution of zinc coated AHSS's
- The use of NH₄SCN does show promise as an alternative test solution to .1N HCL, however, lower concentrations than those tested need to be evaluated for use on zinc coated substrate

Areas of Possible Future Work

- Investigate lower concentrations of NH₄SCN
- Investigate techniques for coating removal
 - Follow with acid immersion bend test
 - Test coated substrate to SEP1970 Tensile Specimen with Punched Hole
 - Others?

For More Information

Curt D. Horvath Eric Batt

General Motors Company ArcelorMittal USA

248-563-3394 248-304-2381